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Abstract 

 
Locating marine organisms in their natural habitats is 

important for understanding ocean biodiversity. Many 
species are often camouflaged in their surroundings, 
rendering them hard to detect. Our increasing ability to 
image large areas of the ocean floor produces millions of 
images, which must be inspected to spot the occasional 
organism. This calls for automation of camouflage 
detection. We investigate reliable detectability of marine 
camouflage by looking for structural regularities as cues 
to locating organisms in their natural settings.  We study 
skates and flounder, which use different mechanisms to 
avoid detection. We introduce a simple edge-based 
criterion for detecting local structural regularity to reduce 
the image area to be inspected for likely presence of 
camouflaged organisms. This sets the stage for efficient 
use of more complex algorithms to confirm detections and 
aid in marine census. We also study the possibility of 
detecting octopuses based on a simple measure of texture 
applied to a hierarchical segmentation of octopus images. 
 

1. Introduction 

There is a large impetus [1-3] to conduct fisheries-
independent stock assessment in untrawlable areas. Such 
surveys might eventually negate the role of trawl surveys 
for bottom fish and help move the community to a non 
extractive method for surveying and assessing the health 
of various fish stock within the marine ecosystem. 

In the last decade, There has been dramatic progress in 
the ability to collect large quantities of images from fixed 
and mobile (AUV, towed vehicle) camera assets. 
Currently our primary limitation lies in the ability to 
process the hundreds of thousands to millions of images 
that have been and are being currently collected [4-7]. 

While there are a number of issues that need to be 
addressed to make such a vision possible, one major 
stumbling block is that there are multiple species that are 
commercially important that tend to camouflage their 
presence on the seafloor. Species may exhibit camouflage 
for a variety of reasons associated with predator prey 

interactions, reproductive functions, etc. Related to the 
camouflage problem also are the issues under which the 
data is presented. The null case dominates—of several 
thousand images that are presented, only a hundred may 
contain camouflaged species. Of those hundred images 
that do contain animals, we also may have a few that may 
have multiple instances in the same image. 

The biological mechanisms associated with camouflage 
are also quite varied and, as illustrated in figure 1, can 
easily fool attempts at detection by even highly trained 
users. Species exhibit spectral blending, disruption and 
texturing to avoid detection. 

In this paper we look for structural and spatial cues in 
images to detect the presence of camouflaged objects. 
Indeed, many animals have a certain economy of form for 
efficient movement, heat conservation, etc., that they 
cannot change easily. This structural economy manifests 
as local regularity of surfaces and boundaries. We 
therefore believe that searching for regularities in outlines 
and textures of features in images will provide initial clues 
to the possible presence of camouflaged creatures. In this 
paper we introduce the notion of contour compressibility 
that helps in effectively isolating contour fragments that 
are likely candidates for camouflaged animal boundaries 
from among thousands of contours in an image. We also 
describe a novel approach to texture-based discrimination 
in the context of detecting octopus in underwater images. 

2. Background 

Although image analysis is a heavily worked area, the 
literature on camouflage detection is relatively scant. 
Tankus and Yeshurun [8] leverage Thayer’s principle of 
countershading. Thayer’s principle states that some 
organisms use deceptive coloration to flatten their albedo, 

  
a. Two skates b. Flounder 

Figure 1. Blending into background (a) and disruption (b) 
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or reflectance function, which would otherwise be convex 
due to body surface geometry. For example, many animals 
are hued darkest on their dorsal part and have gradually 
lighter coloration towards the sides to counteract a convex 
geometry that would otherwise appear brightest at the top 
and darker towards the limbs. Tankus and Yeshurun 
observe that the fact this compensation is observed in 
nature suggests that predators use convexity of albedo to 
detect prey. Accordingly, they design a filter that detects 
convex albedo bodies to break camouflage when this 
compensation is not strong or is absent. However, this 
method does not address camouflage that accounts for 
albedo flattening and other methods where blending into 
clutter is effected by bold, disruptive patterns of coloration 
to confound structural cues (Fig. 1b). Indeed, Stevens et 
al. [9] show that disruptive contrast is successfully used 
even when the patterns do not match background to 
confuse predators. Mayer et al. [10] study the fusion of 
spectral and polarimetric imagery of scenes to detect low 
signature targets using anomaly detection, and point out 
that the combination of the two modalities performs better 
than either one alone. 

Marine imagery is largely restricted to the visible 
spectrum with high attenuation and scattering in other 
bands, making multispectral sensing and analysis 
impractical. Often, even in the visible range, careful color 
correction is needed to recover true colors. This has 
motivated us to investigate structural and spatial methods 
for deciphering camouflage. In particular, we investigate 
the efficacy of using image edges to detect and localize 
possible camouflaged organisms so that higher order 
algorithms may be brought to bear on select edge 
neighborhoods for efficient defeat of camouflage. 

3. Compressibility-based edge filtering 

Our premise for using edge regularity to detect 
camouflaged organisms is based on the observation that 
most organisms have a certain economy of form in their 
physical structure; possibly due to motile and thermal 
efficiency for survival. This suggests that there are likely 
smooth parts of their contours that could give their 
presence away. However, most of these organisms also 
have body parts such as fins, tails, or limbs that can create 
sharp convexities or concavities in their contours. Thus, 
we have to allow for such deviations from smoothness in 
our quest. Further, since there can be a very large number 
of edges detected in a benthic image due to texture and 
clutter, our measure of edge regularity would have to be 
computationally efficient to be viable for automated 
processing. With these considerations in mind, we 
formulate a simple metric of edge regularity, which we 
call edge compressibility. We define compressibility k of a 
digitized curve C as  

                             k(C) = 1- p/|C|                                 (1) 

where p is the smallest number of points required to 
closely approximate a digitized curve by a polygonal line 
to a desired accuracy, and |C| is the total number of points 
on the curve C. The desired accuracy is specified as the 
ratio of maximum deviation of the curve between two 
consecutive approximating points to the straight-line 
distance between the approximating points. In our case, 
we set this accuracy to 0.1. An edge detector, such as the 
Canny edge detector [11] is applied to an image and edges 
are morphologically thinned, using the default thinning 
algorithm in Matlab, to be a single pixel wide and chained 
together based on pixel adjacency to obtain contour chains 
based on Kovesi’s Edgelink method 
(http://www.peterkovesi.com/matlabfns/index.html#edgeli
nk). Each of these contour chains is a digitized curve C 
that will be evaluated for its compressibility k(C) as 
defined above. The p vertices of the polygonal line 
approximating the curve C are chosen by 1) for each point 
x on C, considering a neighborhood chain of 2n points on 
C, where n = min(ceil(|C|/4),8), with n on each side of x. 
and 2) evaluating if that point is maximally deviant from 
the line segment joining the first and the last points of the 
neighborhood and if the deviation is above a specified 
threshold fraction (0.1) of the length of the line segment. 
This procedure is linear in the number of vertices 
comprising C. This ensures that the corners on the curve C 
are represented while minimally including vertices in the 
smooth parts. The method adapts to the saliency of the 
curve by allowing larger neighborhoods for longer curves 
to select fewer points. Other methods of polygonal 
approximation of digital curves may also be used to obtain 
similar fidelity of approximation. 

An image is subjected to edge detection and the 
compressibility k(C) of each edge pixel chain C is 
computed. The edges are then retained if their 
compressibility is above a certain percentile. Of these 
retained edges, only edges whose lengths are above a 
certain percentile (in our case, 80) are retained, resulting 
in a filtered set of piecewise smooth salient edges. This 
process is carried out at multiple scales of the edge 
detection parameter (in the case of the Canny edge 
detector employed in this paper, the scale is determined by 
the standard deviation of the Gaussian convolution kernel) 
to include sharp and broad edges, and the resulting 
retained edge sets merged to obtain a final, filtered, single-
pixel wide edge set by morphological thinning. By varying 
the cut-off percentile of compressibility from 90 to 99, we 
get different edge filterings to capture the ROC 
performance of the filter. The choice of the length and 
compressibility percentile cutoffs was based on 
experimental and empirical observation on test data of 
ranges that provided a significant reduction of obtained 
edges while at the same time retaining some positives on 
camouflaged targets. 
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4. Performance evaluation 

To evaluate our detection algorithm, we selected three 
sets of ground-truthed images of varying difficulty 
containing two kinds of camouflaged marine organisms, 
namely one set of 97 images containing camouflaged 
skates on a sandy substrate and two sets, of 71 images 
each, containing camouflaged flounder; one set containing 
sandy substrates and one set containing gravelly, cluttered 
substrates. The skates shallowly bury themselves in sandy 
substrates, while flounder display disruptive dorsal 
patterns that mimic clutter in their surroundings, or a 
subtly textured pattern in sandy surroundings. Images not 
containing camouflage were not used for this study.  For 
each image (Fig 2a), ground truth was provided as a 
binary image with a mask represented by pixels with value 
one in a region that included the camouflaged organism, 
and zero elsewhere (Fig. 2b). Edge chains above a fixed 
percentile length (Fig. 2c) that fell in the mask region were 
deemed positives (Fig. 2d) and edges that fell outside were 
taken as negatives. For each threshold value of 
compressibility, the positives retained in an image from its 
80 percentile length-thresholded edge image were taken as 
the true positives for that threshold value, the positives not 
retained were deemed false negatives, the negatives 
retained were considered false positives, and the negatives 
not retained were regarded as true negatives. 

 

Figure 3 shows two example images, one containing a 
camouflaged flounder and another, a skate. The images 
with red line markings are detections of contours of high 
compressibility, showing organism edges, along with 
some false alarms. Figure 4 shows the receiver operating 
characteristic (ROC) curves for the three data sets, where 

the abscissa corresponds to the False Alarm Rate = False 
Positives/(False Positives + True Negatives), and the 
ordinate corresponds to the Detection Rate = True 
Positives/(True Positives + False Negatives). The detector 
parameter (cut-off percentile of compressibility) varied to 
generate the ROC curves in each case was the percentile 
compressibility (90-99 percentile) of detected edges above 
a fixed percentile length (80 percentile). These results are 
encouraging given the difficulty of the images in the 
datasets, and the consistent shape of the ROC curves 
across the three data sets point to a common regime of 
optimal performance (95-97 percentile) for the two 
different kinds of camouflage and backgrounds.  

  
a. Image with skate b.  Ground truth markup image 

  
c.  Edge lengths >80 percentile d. Deemed positive edges 

Figure 2. Skate image with ground truth mask and selection of 
contained edges above a percentile compressibility as positives 

  
a. Image with flounder b. Detected edges 

  
c. Image with skate d. Detected edges 

Figure 3. Example detection of compressible edges of 
camouflaged flounder and skate 

 

 

 
Figure 4. ROC curves for flounder and skate edge detection on 
the three sets (skates on sand: cyan, flounder on sand: red, and 
flounder on gravel: green) 
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Figure 5. Example detections of compressible edges of flounder 
in camouflage against mixed, cluttered backgrounds. The left 
column shows the images and the right column shows the 
detections in red lines. The detections illustrated here are at a 
threshold of 98-percentile edge compressibility, resulting in very 
few false positives. 

  

  

  

  

  

  
Figure 6. Example detections of compressible edges of skates in 
camouflage against sandy backgrounds with ridges. The left 
column shows the images and the right column shows the 
detections in red lines. The detections illustrated here are at a 
threshold of 98-percentile edge compressibility. The presence of 
linear sand ridges provides ideal camouflage for the skates, 
which have ridges on their tails, making their detection harder. 
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Indeed, as we tune down the false alarm rate by increasing 
the compressibility percentile, we note that the targets still 
retain the most compressible curves even at 98-percentile 
compressibility (Figs. 5 & 6). This suggests that 
camouflage is likely consistently detectable with our 
notion of edge compressibility.  
 
5. Texture-based discrimination 

 
 In contrast to the low-level detector of edge regularity 

that can be employed at the finest scales, we also 
developed a simple and efficient, higher-level, texture 
detector as a means of discriminating camouflaged 
organisms from background. Indeed, certain organisms, 
such as the octopus are capable of not only changing their 
coloration, but also their shape and surface texture to 
camouflage themselves amidst their surroundings. Texture 
is a regional property requiring evaluation of regions of 
images to detect changes among them. To this end, we 
turn to image segmentation as a means of obtaining image 
regions that more or less conform to image features. This 
ensures a degree of cohesiveness to textures by avoiding, 
to the extent possible, straddling of texture boundaries. 
Our goal is to discriminate among textures rather than 
robustly characterize textures individually, which is a 
harder problem. Textures can be thought of as being made 
up of agglomerations of fine-scale regions. Changes in 
textures can then be interpreted as changes in spatial 
frequency of encountering edges of these fine-scale 
regions as one traverses an image.  To suit this model of 
texture discrimination, we choose a hierarchical image 
segmentation scheme proposed by Prasad et al [12, 13] 
that decomposes images into polygonal segments in a 
hierarchical manner, represented by a pyramidal graph. 
Our choice of this segmentation scheme was driven by our 
need for 1) subdividing features into textural elements, 2) 
efficiently obtaining features and their attributes from 
large images, and 3) a method that does not require input 
parameters tuning for different images.  Briefly, their 
method groups image edges into closed contours based on 
proximity and smooth continuation to obtain a boundary-
conforming polygonal over-segmentation at a fine scale 
[5]. The resulting polygons are assembled into larger 
polygons at subsequent levels based on perceptually 
driven criteria based on polygon boundary and spectral 
properties [13]. Polygons at each level of the hierarchy are 
attributed nodes in a multi-tiered graph, with boundary, 
color, neighborhood, parent and child attributes that make 
for efficient traversal and retrieval of image feature space. 
In this hierarchical segmentation scheme (figure 7(a)), we 
define the ‘texturedness’ of a polygon P at any given level 
of the hierarchy as  
 

                            T(P) = ∑i L(pi)/L(P),                        (2) 
 

where L(pi)  is the perimeter of the ith polygon 
constituting P at the finest scale of the hierarchical 
segmentation, and L(P) is the perimeter of the polygon P. 
This simple measure is inspired by Steinhaus’ theorem 
[14] in stochastic geometry, which states that the expected 
number of intersections <X> of any straight line 
intersecting a compact planar curve Ω is given by  

                        <X> = 2L(Ω)/CH(Ω)                      (3) 
where L(Ω) is the length of the curve Ω, and CH(Ω) is the 
perimeter of its convex hull (figure 7(b)). In our 
adaptation, we replace the perimeter of a curve Ω by the 
sum of perimeters of all children polygons pi of P that are 
properly contained in P at the finest level of segmentation 
plus the perimeter of the polygon P. This is equivalent to 
twice the sum of all boundary arcs of the children 
polygons pi in P. The convex hull of Ω is replaced by the 
perimeter of the containing parent polygon P to account 
for its possible non-convexity and prevent artificially 
increasing the number of intersections. We then subtract 1 
from this modified ratio to obtain T(P) = 0 for a polygon 
with no proper children polygons., resulting in the formula 
(2). We take this as a measure of how “busy” the interior 
of a polygon is, and hence, how textured it is. The 
hierarchical segmentation scheme we employ readily 
provides us with the perimeter of each polygonal segment 
and its children at finer levels. So the computation of T(P)  
is straightforward and efficient. We present this 
computational characterization of texture in a hierarchy 
more rigorously in an appendix in section 9. 
 

 

6. Texture-based region filtering 

We have applied the above measure of texturedness of 

 
(a) 

<X> = 2L(Ω)/CH(Ω) 

(b) 
Figure 7. (a) Schematic of polygonal hierarchical image 
segmentation showing polygon P at a level N constituted of 
polygons pi at level 1. (b) Illustration of Steinhaus theorem for 
planar curves. 
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polygonal features, set out in equation (2), to images 

containing octopus in camouflage with promising results.  
Since the set of such images available to us is small, we 
have not performed a more extensive evaluation of this 
approach. However, we present these early results as an 
example of a simple but surprisingly effective measure of 
textural anomalies. 
 
Figure 8. Illustrates the application of this measure to 
detect octopus texturally mimicking its surroundings by 
wrinkling its surface. However, its wrinkles are very 

 
 

 
Figure 8. Images with octopus and detections using texture 
measure T in equation (2) 

Level 1 

Level 9 

Level 14 
Figure 9. Three levels in the hierarchical polygonal 
segmentation of the second octopus image in figure 6. 
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uniform and create a highly textured pattern that is picked 
up as a maximally scoring texture.  

The first octopus image in figure 8 has one correct 
detection and three false positives close by. This is likely 
because the octopus is trying to match its neighborhood 
texture. Thus, while we expect false positives, the filtering 
helps narrow down the regions of images, which are likely 
locations of camouflaged octopus. 

7. Discussion 

We have assembled over 250 images containing 
camouflaged organisms (skates, flounder, and octopus) 
that exhibit very different mechanisms of camouflage for 
this paper. These were carefully hand selected and ground-
truth annotated for this study. We did not include null 
cases in this study as we were investigating the possibility 
of detection given the presence of camouflaged objects. 
This is because we are trying to answer the question “If 
there are camouflaged objects in an image, where would 
they most likely be?” Our methods, by the nature of their 
functioning, would find the most compressible edges and 
the most textured regions even in images not containing 
camouflage. However, these would all be false positives, 
as there are no true positives in such images. Thus, while 
our methods are not an oracle for detecting camouflage, 
they are valuable cuing mechanisms to human operators 
and computer algorithms to take a closer look or devote 
more resources, while at the same time supporting a 
healthy throughput of data to be processed. The benefit of 
cuing is to reduce the area of search, thereby increasing 
throughput efficiency in benthic surveys. In this study, the 
parameter value for selection of salient edges (80 
percentile) and the compressibility percentile thresholds 
(90-99 percentile) were based on empirical evaluation of 
optimal ranges that optimally balance edge reduction and 
on-target edge retention.  

8. Conclusion and future work 

Camouflage is Nature’s best approximation to 
invisibility. Camouflage detection is a hard and ill-posed 
problem. However, its importance goes beyond marine 
stock and health assessment. It has importance to tactical 
military and intelligence applications as well. A 
scientifically compelling reason is to obtain insights into 
the workings of visual perception by studying how it is 
confounded and when/why it breaks down. In spite of 
significant advances in image analysis and computer 
vision, camouflage detection is beyond our current reach. 
In this paper, we have attempted to address the challenge 
by examining if camouflage, in its various manifestations, 
has a vulnerability that we can exploit to defeat it. The 
approach and filters we have introduced here are meant to 
be cuing mechanisms that help tractable and efficient 
search for camouflage in vast amounts of data-the 

proverbial needle in a haystack problem. Therefore, it is 
imperative that the cuing methods be cheap and fast to 
allow for efficient deployment of more computationally 
complex and sophisticated algorithms to focus attention on 
high probability areas. Camouflage confounds our 
perceptual expectations by spectral blending or disruption. 
There is some evidence that certain colorblind people may 
fare better at deciphering camouflage [15]. Our approach 
avoids spectral information and targets spatial and 
structural aspects of features instead, to address 
camouflage detection. 

It is our hope that this fledgling but promising work in 
camouflage detection will inform and inspire other 
researchers in the computer vision community to address 
this challenging problem. The available camouflage data is 
currently sparse, but with advances in underwater robotic 
and towed vision platforms there will be significant 
opportunities to address camouflage detection in all its 
aspects and applications.  

 
Our future work will focus on combining edge and 

texture-based cuing along with other spatial regularity 
filters such as local symmetry detection (e.g., Patraucean 
et al [16]), which may be more computationally intensive, 
to look for nonaccidental statistics [17] in images that 
reinforce detectability. Spectral processing in cued 
regions, at least for underwater imagery, still requires 
color correction. However, with improved color correction 
algorithms, spectral processing to confirm detections adds 
another dimension to camouflage defeat. Another 
important cuing mechanism that is fast becoming viable is 
stereoscopic depth perception via stereo cameras that will 
provide relief information. We will investigate the efficacy 
of depth from disparity in detecting camouflage. 

9. Appendix: Measuring texture via a hierarchical 

image segmentation  

Given a raster image I, the hierarchical polygonal 
segmentation employed in this paper yields a pyramidal 
graph HI that consists of N ≥ 1 levels of segmentation into 
polygons. We denote the jth polygon at the ith level by 

H I (i, j), and the inclusion of its interior by H I (i, j). The 

level-k descendants of H I (i, j),  i > 1,at a finer level k < i  

are polygons H I (k, m) such that 

                      U
ji

im
II mkHjiH

1

),(),(
=

=                         (4) 

Steinhaus’ theorem on the expected number X  of 

intersections of a straight line intersecting a compact 
planar curve Ω states that 
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Where L (Ω) is the length of the curve Ω, and CH (Ω) is 
the perimeter of the convex hull of Ω. 
In our paper, we model our measure of texture based on 
the above elegant and simple to compute formula. We 
adapt it to the case of nested polygons in the hierarchical 
segmentation as follows: 
 
 1) We replace the numerator of the RHS of equation (5) 
by the sum of the perimeters of all proper level-1 
descendants H I (1, m) ⊂ H I (i, j), m ∈ {k1, ..., k j}  of a level-I 

olygon H I (i, j)  plus the perimeter P(H I (i, j))  of the 

polygon H I (i, j) . This has the effect of taking into 

consideration twice the lengths of boundary segments of 
all level1descendant polygons of H I (i, j) .  

2) We replace the denominator of the RHS of equation (2) 
by the perimeter P(H I (i, j))  of the polygon H I (i, j)  whose 

texturedness we are interested in measuring.  
 
3) Finally, we subtract 1 from this ratio to obtain a texture 
value of zero when the level-1 descendant of H I (i, j)  is 

itself. That is, when H I (1, m) = H I (i, j)  for some single 

value of m.  
 
Indeed, division by the perimeter P(H I (i, j)) , which is also 

the outer perimeter of the level-1 descendants of the 
polygon of interest rather than by its convex hull is to 
avoid a nonzero texture measure when H I (1, m) = H I (i, j) . 

This helps adapt the measure to non-convex polygons 
without artificially boosting their texturedness due to their 
nonconvexity. Thus, our measure of texturedness of the jth 
polygon H I (i, j)at level i of the hierarchical polygonal 

segmentation H I
 of an image I is given by 

 

           T (H I (i, j)) =
P(H I (1, m))

H I (1,m)⊂H I (i, j )

∑

P(H I (i, j))
             

(6) 
 
In our empirical study of the effectiveness of this measure 
in capturing octopuses as highly textured objects, we 
applied it at a level I in the hierarchy at which the median 
number of level-1 descendants per polygon exceeded the 
total number of polygons at level I for the first time. This 
was to avoid evaluating polygons prematurely for texture 

before the polygon agglomeration process precipitated 
textured segments in the hierarchy.  
Upon choosing such a level I, we selected polygons at or 
above the 98th percentile as candidate octopus detections 
in our study.  
We observe that apart from wrinkling its skin to texturally 
blend into its immediate surroundings, the octopus also 
has relatively compact, if not convex, form. This reduces 
the perimeter of the polygon delineating (e.g., at level 14 
of figure 9 in the paper) the octopus, thereby giving it a 
higher texture value than otherwise. This may also be a 
factor in helping distinguish it from surrounding 
vegetative textures, which are more ramified in shape. 
This work was supported in part by research grants from 
the Gordon & Betty Moore Foundation Grant # 2649, 
subaward  No. A101036, and NOAA fisheries under their 
Automated Image Analysis Strategic Initiative . 
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